LECTURE: 3-1 DERIVATIVES OF POLYNOMIALS AND
EXPONENTIALS

d
Derivative of a Constant Function: o (c) = O—
X

fidwre - y=c is & hovitonl del. y=c, foxd=¢
ANN\NY

line | as e Sope isS L00= i~ f(x+h’)\’-(‘(x)
T 2Z2evo ) — h30
¢ — \Y =0 —tim C —C
) ho o
= lim Q..
h0 n
=0

Example 1: Find the derivatives of the following functions.
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Example 2: Using the definition of the derivative, find the derivatives of the following functions.
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The Power Rule: If n is a positive integer, then %r” = _n_X_
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Example 3: Find the derivatives of the following functions.
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Using the definition of the derivative you can prove that the following derivatives. Does the power rule
appear to hold for non-integer exponents as well?
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Example 4: Differentiate the following functions.
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Using the power rule we can find equations of tangent lines much more quickly! We can also find the normal
line, which is defined as the line through a point P that is perpendicular to the tangent line at P.

Example 5: Find equations of the tangent line and normal line to the curve y = z2/x at the point (1, 1).
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The Constant Multiple Rule: If c is a constant and f is differentiable function then
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Example 6: Differentiate the following functions.
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The Sum/Difference Rule: If f and g are both differentiable, then

7)) = £ F(@) % - g(a).
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Example 7: Find the derivative of y = 27 + 102 — 722 4 22 — 9.
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Example 8: Find the points on the curve y = x* — 222 + 4 where the tangent line is horizontal. W W
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Derivative of the Natural Exponential Function: d—ez =e”
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Example 10: Find the derivatives of the following functions.
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Example 11: At what point on the curve y = ¢ is the tangent line parallel to the line y — 5z = 2?
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Example 13: Biologists have proposed a cubic function to model the length L of an Alaskan rockfish at age A

L =0.01554% — 0.3724% 4+ 3.954 4+ 1.21

dL
where L is measured in inches and A in years. Calculate A at A = 12 and interpret your answer.
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Example 14: The equation of motion of a particle is s = 2¢3 — 15¢% 4 36t + 1. Find the velocity and acceleration
functions. Then, determiry

velocity is zero.
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